Customizing and Refactoring
Gradle Builds

Chilipp, Gradle Inc.

Marc




Marc Philipp

Software Engineer at Gradle, Inc.
JUnit @ team lead

Twitter: @marcphilipp
Web: marcphilipp.de



https://twitter.com/marcphilipp
https://www.marcphilipp.de/

What is Gradle?




What is Gradle?

Gradle is an open-source build
automation tool

® based on the Java Virtual Machine (JVM)
® mplemented in Java

@ focused on flexibility and performance

¢ 100% open-source (Apache 2.0) and free




N VX Al e

Versatile

® Java ecosystem: Java, Groovy, Kotlin, Scala, ...
e Official build tool for Androia

® Native projects: C, C++, Swift, .
e And more: Go, Asclidoctor, ...

é'ﬁnalw!




Gradle Inc.

® \/ision: Build Happiness
e Mission: Accelerate Developer Productivity
¢ Products:
O Gradle Build Tool
O Gradle Enterprise
@ more than 60 employees including over 40 engineers




Agenda

® Basic concepts

¢ From Quick & Dirty to Safe & Sound
O dependency management
O custom tasks
O custom configuration




Show of Hands




Basic Concepts




® {aS
® {aS

Tasks

® 2 Gradle bulld executes tasks

kS can de

hend on other tasks

ks have Ir

pUts and outputs




Hello World




Build Scripts

A Gradle project is configured in build scripts:

® settings.gradle[.kts]: configures the subprojects

that comprise the build
® build.gradle[.kts]: configures the used plugins

and tasks

Dev/Java/JavaScript



settings.gradle[.kts]




build.gradle|.kts]




Groovy vs. Kotlin DSL

® build scripts use a Domain Specific Language (DSL)
¢ nitially Gradle only supported Groovy

O dynamically typed

O limited IDE support
e Kotlin DSL is stable since Gradle 5.0

Build scripts should be declarative -
complex logic does not belong here.




Gradle Wrapper
./gradlew <tasks> instead of gradle <tasks>

® cxecute builds with prior installation of Gradle
® downloads required version
® caches already downloaded versions locally
® cveryone uses the same version




Anatomy of a Gradle project

$ gradle init --dsl=kotlin --type=java-application \
--test-framework=junit --package=com.example \
--project-name=new-project

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

ZmCCeNto



Incremental Builds

® only execute tasks that are affected by changes in
between two subsequent builds
O Inputs have changed
O outputs are present and unchanged
O task implementation has changed (e.g. different
plugin version)
® keep outputs of all tasks that are up-to-date




First Build

$ ./gradlew --console=plain build
> Task :compileJava

> Task :processResources NO-SOURCE
> Task :classes

> Task :jar

[...]

> Task :compileTestJava

> Task :testClasses

> Task :test

> Task :check

> Task :build

BUILD SUCCESSFUL in 5s
7 actionable tasks: 7 executed




Subsequent Build

./gradlew --console=plain build
Task :compileJava UP-TO-DATE
Task :processResources NO-SOURCE
Task :classes UP-TO-DATE

Task :jar UP-TO-DATE

o]

Task :compileTestJava UP-TO-DATE
Task :testClasses UP-TO-DATE
Task :test UP-TO-DATE

Task :check UP-TO-DATE

Task :build UP-TO-DATE

vV V.V V V™YV V V V e

BUILD SUCCESSFUL in @s
]/ actionable tasks: 7 up-to-date




Build Scans

e Accelerate debugging of build problems
¢ Private but shareable link
® [Free to use on scans.gradle.com

$ ./gradlew build --scan

BUILD SUCCESSFUL in 1s
7/ actionable tasks: 5 executed, 2 up-to-date

Publishing build scan...
https://gradle.com/s/lu7dxy7quyoju

» https:/gradle.com/s/lu/dxy/quyoju



https://scans.gradle.com/
https://gradle.com/s/lu7dxy7quyoju

Build Cache

® allows reusing task outputs of any previous build
® |[0cal and remote cache

$ git pull
[...]
185 files changed, 4320 insertions(+), 1755 deletions(-)

$ ./gradlew --build-cache sanityCheck

BUILD SUCCESSFUL in 1m 11s
1338 actionable tasks: 238 executed, 1100 from cache




Dependency Management




Demo




Recap

® Don't duplicate dependency version
® Prefer api or implementation over compile

® Use buildSrc to collect dependency versions
¢ Use a java-platform plugin to streamline
dependency management

Dev/Java/JavaScript




More on Dependency Management

Free webinars:

® Nhittps:/gradle.com/blog/dependency-management-

fundamentals/

® Nhttps:/gradle.com/blog/dependency-management-
part-2-handling-conflicts/



https://gradle.com/blog/dependency-management-fundamentals/
https://gradle.com/blog/dependency-management-part-2-handling-conflicts/

Custom Tasks




Demo




Recap

¢ Don't define complex tasks directly in the build script
® Define them In the buildSrc project

e Allows for testing and reuse Iin subprojects




Custom Configuration




Demo




Recap

® Extract custom logic into separate build scripts

® Fven better: Extract your custom logic into a pre-
compiled script plugin in buildSrc

® Next step: Move it to a separate plugin to use it in
independent projects

Dev/Java/JavaScript



Summary




Summary

e Keep your build scripts declarative
® Use buildSrc to share logic




Links

® Demo code:
nttps:/github.com/marcphilipp/gradle-refactorings

¢ My talks on Gradle and JUnit:
https:/www.marcphilipp.de/en/talks/



https://github.com/marcphilipp/gradle-refactorings
https://www.marcphilipp.de/en/talks/

Y S

)

Thank you!

@marcphilipp

—)


https://twitter.com/marcphilipp

