
© Copyright Azul Systems 2019

© Copyright Azul Systems 2015

@speakjava
azul.com

From JDK 9 To 13
And Beyond

Simon Ritter
Deputy CTO, Azul Systems

1

© Copyright Azul Systems 2019

JDK 9: Big And Small Changes

2

© Copyright Azul Systems 2019

Java Platform Module System (JPMS)
§  The core Java libraries are now a set of modules (JEP 220)

– 75 OpenJDK modules:
§ 24 Java SE
§ 2 aggregator modules
§ 1 smartcard (???)
§ 48 JDK

– Oracle JDK: 14 additional JDK, 8 JavaFX, 2 Oracle specific
§  Most internal APIs now encapsulated (JEP 260)

– sun.misc.Unsafe	
– Some can be used with command line options

 3

© Copyright Azul Systems 2019

jlink: The Java Linker (JEP 282)

$	jlink	--module-path	$JDKMODS:$MYMODS	\	
		--addmods	com.azul.zapp	–-output	myimage	
	
$	myimage/bin/java	–-list-modules	
java.base@9	
java.logging@9	
java.sql@9	
java.xml@9	
com.azul.zapp@1.0	
com.azul.zoop@1.0	
com.azul.zeta@1.0	

myimage

… conf bin

jlink

lib

© Copyright Azul Systems 2019

JDK 9 Onwards And Compatibility

5

"Clean applications that just depend on java.se
 should just work" - Oracle

© Copyright Azul Systems 2019

JDK 9: The Clean Up Starts
§  JDK 9 was a significant change for Java

– Deprecated APIs were removed for the first time
§ Six methods and one class
§ JDK 10 removed 1 package, 6 classes, 9 methods and 1 field

– Redundant features eliminated
§  jhat tool, JVM TI hprof agent
§ Numerous deprecated GC options removed

§  JDK 10, 11 and 12 have continued this work
§  More features will be removed in the future

§ CMS GC, Nashorn and Pack200 all deprecated. Others?

6

© Copyright Azul Systems 2019

Compatibility Not Guaranteed
§  New versions of Java may include breaking changes

– Anything for removal will be deprecated first
– Minimum of one release warning

§ Could be only six months

7

© Copyright Azul Systems 2019

JDK 10

© Copyright Azul Systems 2019

Local Variable Type Inference (JEP 286)

§  Java gets var

9

var	userList	=	new	ArrayList<String>();	//	infers	ArrayList<String>	
var	stream	=	list.stream();													//	infers	Stream<String>	
	
	
for	(var	name	:	userList)	{													//	infers	String	
		...	
}	
	
for	(var	i	=	0;	i	<	10;	i++)	{														//	infers	int	
		...	
}	

© Copyright Azul Systems 2019

var: Clearer try-with-resources

10

try	(InputStream	inputStream	=	socket.getInputStream();	
					InputStreamReader	inputStreamReader	=		
							new	InputStreamReader(inputStream,	UTF_8);	
					BufferedReader	bufferedReader	=		
							new	BufferedReader(inputStreamReader))	{	
					//	Use	bufferedReader	
}	

© Copyright Azul Systems 2019

var: Clearer try-with-resources

11

try	(var	inputStream	=	socket.getInputStream();	
					var	inputStreamReader	=	new	InputStreamReader(inputStream,	UTF_8);	
					var	bufferedReader	=	new	BufferedReader(inputStreamReader))	{	
					//	Use	bufferedReader	
}	

© Copyright Azul Systems 2019

var: Reserved Type (Not Keyword)
var	var	=	new	ValueAddedReseller();	

public	class	var	{	
		public	var(String	x)	{	
				...	
		}	
}	

public	class	Var	{	
		public	Var(String	x)	{	
				...	
		}	
}	

© Copyright Azul Systems 2019

JDK 10: Selected JEPs
§  JEP 307: Parallel Full GC for G1
§  JEP 310: Application Class-Data Sharing
§  JEP 317: Experimental Java-based JIT compiler (Graal)
§  JEP 316: Heap allocation on alternative devices (Intel)

13

© Copyright Azul Systems 2019

JDK 10: APIs
§  73 New APIs

– List, Set, Map.copyOf(Collection)	
– Collectors	

§ toUnmodifiableList	
§ toUnmodifiableMap	
§ toUnmodifiableSet	

– Optional.orElseThrow()	

14

© Copyright Azul Systems 2019

JDK 11

© Copyright Azul Systems 2019

323: Extend Local-Variable Syntax
§  Local-variable syntax for lambda parameters

16

list.stream()	
		.map(s	->	s.toLowerCase())	
		.collect(Collectors.toList());	

list.stream()	
		.map((var	s)	->	s.toLowerCase())	
		.collect(Collectors.toList());	

list.stream()	
		.map((@Notnull	var	s)	->	s.toLowerCase())	
		.collect(Collectors.toList());	

© Copyright Azul Systems 2019

330: Launch Single File Source Code

§  JDK 10 has three modes for the Java launcher
– Launch a class file
– Launch the main class of a JAR file
– Launch the main class of a module

§  JDK 11 adds a forth
– Launch a class declared in a source file

17

$	java	Factorial.java	4	

© Copyright Azul Systems 2019

Single File Source Code Shebang

18

#!$JAVA_HOME/bin/java	--source	11	
public	class	Factorial	{	
		public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);	
				int	r	=	(n	==	0)	?	0	:	1;	
				for	(int	i	=	1;	i	<=	n;	i++)	
						r	*=	i;	
				System.out.println("n	=	"	+	n	+	",	n!	=	"	+	r);	
		}	
}	
	
$./Factorial	4	
n	=	4,	n!	=	24	

© Copyright Azul Systems 2019

JDK 11 Selected JEPs
§  181: Nest-based Access Control
§  309: Dynamic Class-file constants
§  318: Epsilon garbage collector
§  321: HTTP client
§  332: Transport Layer Security (TLS) 1.3
§  333: ZGC: Experimental low-latency garbage collector

19

© Copyright Azul Systems 2019

New APIs
§  New I/O methods

§ InputStream	nullInputStream()	
§ OutputStream	nullOutputStream()	
§ Reader	nullReader()	
§ Writer	nullWriter()	

§  Optional	
§ isEmpty()		//	Opposite	of	isPresent	

20

© Copyright Azul Systems 2019

New APIs
§  New String methods

– isBlank()	
– Stream	lines()	
– String	repeat(int)	
– String	strip()	
– String	stripLeading()	
– String	stripTrailing()	

21

© Copyright Azul Systems 2019

New APIs
§  Predicate	not(Predicate)	

22

lines.stream()	
		.filter(s	->	!s.isBlank())	

lines.stream()	
		.filter(Predicate.not(String::isBlank))	

lines.stream()	
		.filter(not(String::isBlank))	

© Copyright Azul Systems 2019

JDK 11: Modules Removed
– The java.se.ee aggregator-module has been removed

§ java.corba	
§ java.transaction	
§ java.activation	
§ java.xml.bind	
§ java.xml.ws	
§ java.xml.ws.annotation	

23

© Copyright Azul Systems 2019

JDK 12

© Copyright Azul Systems 2019

Switch Expressions
§  First preview feature in the OpenJDK

– Not included in the Java SE standard
§  Switch construct was a statement

– No concept of generating a result that could be assigned
§  Rather clunky syntax

– Every case statement needs to be separated
– Must remember break (default is to fall through)
– Scope of local variables is not intuitive

25

© Copyright Azul Systems 2019

Old-Style Switch Statement

26

int	numLetters;	
switch	(day)	{	
				case	MONDAY:	
				case	FRIDAY:	
				case	SUNDAY:	
								numLetters	=	6;	
								break;	
				case	TUESDAY:	
								numLetters	=	7;	
								break;	
				case	THURSDAY:	
				case	SATURDAY:	
								numLetters	=	8;	
								break;	
				case	WEDNESDAY:	
								numLetters	=	9;	
								break;	
				default:	
								throw	new	IllegalStateException("Huh?:	"	+	day);	};	

© Copyright Azul Systems 2019

New-Style Switch Expression

int	numLetters	=	switch	(day)	{	
				case	MONDAY,	FRIDAY,	SUNDAY	->	6;	
				case	TUESDAY	->	7;	
				case	THURSDAY,	SATURDAY	->	8;	
				case	WEDNESDAY	->	9;	
				default	->	throw	new	IllegalStateException("Huh?:	"	+	day);	
};	

© Copyright Azul Systems 2019

New Old-Style Switch Expression
int	numLetters	=	switch	(day)	{	
		case	MONDAY:	
		case	FRIDAY:	
		case	SUNDAY:	
				break	6;	
		case	TUESDAY		
				break	7;	
		case	THURSDAY	
		case	SATURDAY	
				break	8;	
		case	WEDNESDAY		
				break	9;	
		default:		
				throw	new	IllegalStateException("Huh?:	"	+	day);	
};	

© Copyright Azul Systems 2019

Switch Expression: Code Blocks

29

int	levelResult	=	switch	(level)	{	
		case	1	->	{	
				var	x	=	computeFrom(level);	
				logger.info("Level	1	alert");	
				break	x;	
		}	
		case	2	->	{	
				var	x	=	negativeComputeFrom(level);	
				logger.info("Level	2	alert");	
				break	x;	
		}	
		default	->	throw	new	IllegalStateException("What	level?:	"	+	level);	
};	

© Copyright Azul Systems 2019

JDK 12: Selected JEPs
§  189: Shenandoah GC (Experimental)
§  G1 GC updates

– 344: Abortable mixed collections
– 346: Return unused committed memory

§  334: JVM constant API
§  341: Default CDS archive

© Copyright Azul Systems 2019

Streams
§  New collector, teeing

– teeing(Collector,	Collector,	BiFunction)	
§  Collect a stream using two collectors
§  Use a BiFunction to merge the two collections

31

Collector 1

Collector 2

BiFunction
Stream Result

© Copyright Azul Systems 2019

Streams

32

//	Averaging	
Double	average	=	Stream.of(1,	4,	5,	2,	1,	7)		
		.collect(teeing(summingDouble(i	->	i),	counting(),	
																		(sum,	n)	->	sum	/	n));	

© Copyright Azul Systems 2019

JDK 13

© Copyright Azul Systems 2019

Text Blocks
String	webPage	=	"""	
																	<html>	
																			<body>	
																					<p>My	web	page</p>	
																			</body>	
																	</html>	
																	""";	
System.out.println(webPage);		

$	java	WebPage	
<html>	
		<body>	
				<p>My	web	page</p>	
		</body>	
</html>	
	
$	
	
														

© Copyright Azul Systems 2019

Switch Expression
int	numLetters	=	switch	(day)	{	
		case	MONDAY:	
		case	FRIDAY:	
		case	SUNDAY:	
				break	6;	
		case	TUESDAY		
				break	7;	
		case	THURSDAY	
		case	SATURDAY	
				break	8;	
		case	WEDNESDAY		
				break	9;	
		default:		
				throw	new	IllegalStateException("Huh?:	"	+	day);	
};	

© Copyright Azul Systems 2019

Switch Expression
int	numLetters	=	switch	(day)	{	
		case	MONDAY:	
		case	FRIDAY:	
		case	SUNDAY:	
				yield	6;	
		case	TUESDAY		
				yield	7;	
		case	THURSDAY	
		case	SATURDAY	
				yield	8;	
		case	WEDNESDAY		
				yield	9;	
		default:		
				throw	new	IllegalStateException("Huh?:	"	+	day);	
};	

© Copyright Azul Systems 2019

Longer Term JDK Futures

© Copyright Azul Systems 2019

Project Valhalla
§  Java has:

– Primitives: for performance
– Objects: for encapsulation, polymorphism, inheritance, OO

§  Problem is where we want to use primitives but can't
– ArrayList<int> won't work
– ArrayList<Integer> requires boxing and unboxing,

object creation, heap overhead, indirection reference

38

© Copyright Azul Systems 2019

Project Valhalla
§  Value types
§  "Codes like a class, works like a primitive"

– Can have methods and fields
– Can implement interfaces
– Can use encapsulation
– Can be generic
– Can't be mutated
– Can't be sub-classed

39

© Copyright Azul Systems 2019

Project Loom
§  Further work on making concurrent programming simpler

– Threads are too heavyweight
§  Loom will introduce fibres

–  JVM level threads (remember green threads?)
– Add continuations to the JVM
– Use the ForkJoinPool scheduler
– Much lighter weight than threads

§ Less memory
§ Close to zero overhead for task switching

40

© Copyright Azul Systems 2019

Azul's Zulu Java

© Copyright Azul Systems 2019

Zulu Community
§  Azul’s FREE binary distribution of OpenJDK

– Passes all TCK tests
§  JDK 7, 8, 9, 10, 11 and 12 available
§  Wide platform support:

– Intel 64-bit Windows, Mac, Linux
– Intel 32-bit Windows and Linux
– ARM 32 and 64-bit

42

www.azul.com/downloads/zulu

© Copyright Azul Systems 2019

Zulu Enterprise
§  Backporting of bug fixes and security patches from

supported OpenJDK release
§  Zulu 8 supported until March 2026
§  Zulu 6 supported until end of 2019
§  LTS releases have 9 years active + 2 years passive support
§  Medium Term Support releases

– Two interim releases between LTS releases (13, 15...)
– Bridge to LTS releases
– Supported until 18 months after next LTS release

43

© Copyright Azul Systems 2019

Summary

© Copyright Azul Systems 2019

Java Continues To Evolve
§  Faster Java releases

– Feature release every 6 months
– Access to updates is a consideration

§  Lots of ideas to improve Java
– Value types, fibres, syntax improvements

§  Zulu Java has wide platform and JDK version support
– Very reasonable cost for commercial support

45

© Copyright Azul Systems 2019

© Copyright Azul Systems 2015

@speakjava
azul.com

Thank You

Simon Ritter
Deputy CTO, Azul Systems

46

